Synaptotagmin IV regulates glial glutamate release.

نویسندگان

  • Qi Zhang
  • Mitsunori Fukuda
  • Elisabeth Van Bockstaele
  • Olivier Pascual
  • Philip G Haydon
چکیده

Calcium-binding synaptotagmins (Syts) are membrane proteins that are conserved from nematode to human. Fifteen Syts (Syts I-XV) have been identified in mammalian species. Syt I has been well studied and is a candidate for the Ca(2+)-sensor that triggers evoked exocytosis underlying fast synaptic transmission. Whereas the functions of the other Syts are unclear, Syt IV is of particular interest because it is rapidly up-regulated after chronic depolarization or seizures, and because null mutations exhibit deficits in fine motor coordination and hippocampus-dependent memory. Screening Syts I-XIII, which are enriched in brain, we find that Syt IV is located in processes of astroglia in situ. Reduction of Syt IV in astrocytes by RNA interference decreases Ca(2+)-dependent glutamate release, a gliotransmission pathway that regulates synaptic transmission. Mutants of the C2B domain, the only putative Ca(2+)-binding domain in Syt IV, act in a dominant-negative fashion over Ca(2+)-regulated glial glutamate release, but not gliotransmission induced by changes in osmolarity. Because we find that Syt IV is expressed predominantly by astrocytes and is not in the presynaptic terminals of the hippocampus, and because Syt IV knockout mice exhibit hippocampal-based memory deficits, our data raise the intriguing possibility that Syt IV-mediated gliotransmission contributes to hippocampal-based memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction.

Glial cells are emerging as important regulators of synapse formation, maturation, and plasticity through the release of secreted signaling molecules. Here we use chromatin immunoprecipitation along with Drosophila genomic tiling arrays to define potential targets of the glial transcription factor Reversed polarity (Repo). Unexpectedly, we identified wingless (wg), a secreted morphogen that reg...

متن کامل

Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons.

We have asked whether loss of the Ca2+ sensor protein synaptotagmin I influences the total amount of neurotransmitter released after a presynaptic action potential. Hippocampal neurons from synaptotagmin I knock-out mice had a greatly reduced fast synchronous component of glutamate release, as reported previously. However, the amount of glutamate released during the slow asynchronous component ...

متن کامل

Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release

Ca(2+) triggers neurotransmitter release in at least two principal modes, synchronous and asynchronous release. Synaptotagmin 1 functions as a Ca(2+) sensor for synchronous release, but its role in asynchronous release remains unclear. We now show that in cultured cortical neurons stimulated at low frequency (<or.1 Hz), deletion of synaptotagmin 1 blocks synchronous GABA and glutamate release w...

متن کامل

Synaptotagmin IV does not alter excitatory fast synaptic transmission or fusion pore kinetics in mammalian CNS neurons.

Synaptotagmin IV (Syt IV) is a brain-specific isoform of the synaptotagmin family, the levels of which are strongly elevated after seizure activity. The dominant hypothesis of Syt IV function states that Syt IV upregulation is a neuroprotective mechanism for reducing neurotransmitter release. To test this hypothesis in mammalian CNS synapses, Syt IV was overexpressed in cultured mouse hippocamp...

متن کامل

Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders.

Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. Especially, astrocytes are essential for neuronal activity in the brain. Astrocytes actively participate in synapse formation and brain information processing by releasing or uptaking gliotransmitters such as glutamate, d-serine, adenosine 5'-triphosphate (ATP), and adenosine. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 25  شماره 

صفحات  -

تاریخ انتشار 2004